Automatic Detection and Correction of Multi-class Classification Errors Using System Whole-part Relationships
نویسندگان
چکیده
Real-world dynamic systems such as physical and atmosphereocean systems often exhibit a hierarchical system-subsystem structure. However, the paradigm of making this hierarchical/modular structure and the rich properties they encode a “first-class citizen” of machine learning algorithms is largely absent from the literature. Furthermore, traditional data mining approaches focus on designing new classifiers or ensembles of classifiers, while there is a lack of study on detecting and correcting prediction errors of existing forecasting (or classification) algorithms. In this paper, we propose DETECTOR, a hierarchical method for detecting and correcting forecast errors by employing the whole-part relationships between the target system and non-target systems. Experimental results show that DETECTOR can successfully detect and correct forecasting errors made by state-of-art classifier ensemble techniques and traditional single classifier methods at an average rate of 22%, corresponding to a 11% average forecasting accuracy increase, in seasonal forecasting of hurricanes and landfalling hurricanes in North Atlantic and North African rainfall.
منابع مشابه
MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملDesign and implementation of Persian spelling detection and correction system based on Semantic
Persian Language has a special feature (grapheme, homophone, and multi-shape clinging characters) in electronic devices. Furthermore, design and implementation of NLP tools for Persian are more challenging than other languages (e.g. English or German). Spelling tools are used widely for editing user texts like emails and text in editors. Also developing Persian tools will provide Persian progr...
متن کاملAn approach to fault detection and correction in design of systems using of Turbo codes
We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...
متن کاملDimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کامل